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"ANAVEZOUT AR VEVREDEREZH DRE ZIADURIOÙ GANT SENSERIOÙ GOURIZET HA DAOUGEZIOÙ SKAO : 

RANVELLIÑ AN EMZALC'HOÙ DRE GOMPANIAJ HAG AVAELEREZH."



Rational (1/2)

Skateboard study 
⚫ Many sociology studies
⚫ Trick recognition [Groh et al., PMC. 2017]
⚫ Assessment of Energy expenditure (longboard cruising) [Board, Brownings, EJAP. 2014]
⚫ Heart rate response (skatepark) [Wiles et al., IJES. 2020]
⚫ Transportation and built environment study [Fang, Handy, Transportation. 2017]

→ Rising popularity of skateboard for transportation.

Kickboard (=kick-scooter, nonmotorized scooter)
⚫ Became a popular transportation mean in the past decade. 
⚫ Recent increase in the number injuries related to the use of kickboard [Tucket. BMC 

Public Health, 2022; Park et al., J Oral Maxillofac Surg. 2021] 

Because active transportation can be an important contributor to daily PA [Dinu et al., Sports Med. 2019], the lack of push-
push-glide activity-specific algorithms for wearable activity trackers may lead to misestimations of daily energy expenditure 
in regular skateboard or kickboard commuters.

Taken from Groh et al. (2017), PMC. 
10.1016/j.pmcj.2017.05.007 

Board, Browning (2014), EJAP. 
10.1007/s00421-014-2959-x

→ No study aiming at developing wearable device algorithms able to recognize skateboard and kickboard behaviors and 
predicting the related energy expenditures.



Rational (2/2)

An example of interconnected environment where algorithms in 
the cloud process data from various connected devices, including 
smart shoes, wearable sensors, and smartphones.

Activity tracker platforms
⚫ Constant evolution (hardware, connectivity, software)
⚫ Contemporary trackers:

➢ Multi-sensing capabilities
➢ Consist in wrist-worn device paired to smartphone 

⚫ 5G and IoT technology
 → Ever more ubiquitous monitoring of our physical behaviors

Smart shoe devices
⚫ lower limb contributes significantly to energy expenditure
⚫ Plantar pressure
→ information on the interaction between feet and ground



Preliminary studies

Previous smart shoe study:
Objective
Testing the feasibility of 
recognizing skateboard and 
kickboard commuting behaviors 
using IMU sensor and/or smart-
shoe device data.

Successful in recognizing a wide range 
of sedentary and locomotive 
behaviors (kickboard and skateboard 
were not included in the protocol) 
[Ren et al., PeerJ 2020]
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Push-push-glide activity and 
accelerometer sensor:

potential signature of push-push-glide 
activity in the accelerometer sensor 
signal.

20-second window 3-axis accelerometer (hip-worn) data for 
skateboard commuting and 3 other selected locomotive activities

Ultimate goal
→ Supporting more accurate 
energy expenditure predictions 
related to skateboard and 
kickboard commuting behaviors.



Method

• 3-axis accelerometer
• 3-axis gyro sensor • 16 pressure sensors

Total: 2-hour experiment

Mean SD

Age 33.5 13.9

Height 169.5 11.1

Body weight 63.7 13.4

Subject Number 15

M：F
Male 10

Female 5

Level

Beginner 5

Advanced/Expert 9

Professionnal 1

Stance

Regular 8

Goofy 5

Regular Mongo 1

Dominant hand
Right 14

Left 1

Citizenship 7

Heterogenous population of 15 subjects



Method Accelerometer sensor [Oxford Wearables Group]:
• Processing of the 3-axis and vector norm time series

• General statistics
• Roll, pitch, yaw analysis
• FFT analysis
• Cross-correlation analysis

https://github.com/OxWearables/biobankAccelerometerAnalysis
Ren et al., PeerJ 2020

Gyro sensor:
• Processing of the 3-axis

• Roll, pitch, yew analysis
• FFT analysis

• Combining gyro sensor and accelerometer information 
[push-push-glide activity-specific features]:
• Cross-correlation

Plantar pressure [Ren et al., PeerJ 2020]
• Total Force vector data [sum of sensor 1-16] (Moticon 

Software):
• General statistics
• FFT analysis
• Peak-interval analysis
• Left and right feet comparative analysis 

→ Total of 464 data features

20-second window analysis



Method

Summary of the data reduction process

Raw data vector shape:
7 activities x 15 subjects x 6 min x 60 sec x 100 Hz sampling rate = 3,780.000 samples (x 8 time series)
3,780,000 samples (100 Hz) / 20-sec windows (windows of 2,000 samples) = 1890 data points

One sensor Several sensor combined

205 205 54 410 259 259 464 dimensions

Activity Recognition random forest classifier

Training-Test split:
• Subject-wise design
• Training: 10 subject / Testing: 5 subjects
→ 3003 possible combinations

Forest shape:
• 20-tree forests
• No-depth criterion (each leaf is pure)
Outcome:
• confusion matrix (mean values over all combinations)

[sklearn ensemble.RandomForestClassifier]



Results: activity recognition
Overall:
-good classification of the 
activities

One sensor analyses:
-Wrist sensor shows best 
performances.
-Pocket sensor shows significant 
confusion between skateboard 
and kickboard

Several sensors:
-Improve predictions to 100%



Results: energy expenditure (1/2)

Actual intensities of activities calculated relatively to the 
resting metabolic rate

METs

Mean SD 2011 Compendium of Physical Activities

Slow Walk 2.78 0.58 2.8-3.0 walking 2.0-2.5mph, firm surface

FastWalk 4.01 0.86 4.3 walking 3.5mph, brisk, firm surface

SlowSkate 4.51 1.87 5.0 skateboarding, moderate effort

FastSkate 6.64 2.80 6.0 skateboarding, vigrous effort

SlowKick 3.73 1.29 -

FastKick 6.44 2.78 -

Jogging 8.13 2.96 7.0-8.0 jogging, general, in place



Results: energy expenditure (2/2)

Feature: Total Force mean

model walk skate kick jog all

coeff 0.0023 0.0054 0.0064 0.008 0.0037

R2 0.196 0.143 0.101 0.269 0.077

p-value 0.014 0.04 0.086 0.048 0.004

Feature: Acceleration Vector mean

model walk skate kick jog all

coeff 6.6 5.3 18.1 5.3 6.3

R2 0.279 0.053 0.276 0.321 0.333

p-value 0.003 0.223 0.003 0.028 <0.001

More important slope for the skateboard and kickboard activities for some selected feature expressing plantar pressure 
(smart shoe) or acceleration (IMU pocket, IMU wrist) quantitatively
→ Necessity to perform intraclass regression for accurate predictions of energy expenditure 

Feature: Acceleration Vector mean

model walk skate kick jog all

coeff 4.7 30.2 26.9 3.3 5.6

R2 0.054 0.191 0.135 0.15 0.222

p-value 0.218 0.016 0.046 0.154 <0.001

Walk Skate Kick Run All



Conclusions

• Recognizing skateboard and kickboard cruising activities using wearable IMU sensor and or smart shoe 
devices is feasible.

• The wrist-worn activity tracker device acquiring accelerometer and gyroscope data reach nearly 100% of 
accuracy in classifying skateboard and kickboard among other typical locomotive activities.

• Push-push-glide activities showed activity-specific relationships between acceleration (IMU sensors) 
and energy expenditure, and plantar force (smart shoe device) and energy expenditure.

→ Skate board cruising and kickboard is feasible but also crucial to the accurate computation of energy expenditure 
predictions related to these activities.



Thank you
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Hitomi Hatori, MSc.
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Yuki Nakajima, MSc.
Smart-home and energy 
expenditure prediction
(poster presentation)





1 vs Rest All

Walking, upstairs, downstairs, running, bicycle, sitting, standing, skateboarding, kickboarding



Scores

Model Sensor combination balanced-train balanced-test

1 OpenGO 1.000 0.917

2 IMU-pocket 1.000 0.858

3 IMU-wrist 1.000 0.991

4 OpenGO + IMU-pocket 1.000 0.943

5 OpenGO + IMU-wrist 1.000 0.997

6
IMU-wrist + IMU-

pocket
1.000 0.994

7 All sensors 1.000 0.998



Preliminary studies
Previous smart shoe study:

The wrist sensor is confused between 
skateboard and kickboard activities.

• No energy expenditure data
• Does smart shoe devices help improving the recognition of skateboard and 

kickboard activities?

Successful in recognizing a wide range 
of sedentary and locomotive 
behaviors (kickboard and skateboard 
were not included in the protocol) 
[Ren et al., PeerJ 2020]
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Push-push-glide activity and 
accelerometer sensor:

potential signature of push-push-glide 
activity in the accelerometer sensor 
signal.

20-second window 3-axis accelerometer (hip-worn) data for 
skateboard commuting and 3 other selected locomotive activities

Recognizing skateboard and 
kickboard using IMU sensor data:
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