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Obtaining reliable data from activity trackers is crucial for physical activity studies. Except for higher end models that offer heart
rate (HR) monitoring, consumer-grade devices typically do not provide a method for estimating wearing time. This manuscript
introduces a new Python software (“ActiWearCheck”) developed to identify days of valid wear of Fitbit wrist-worn activity
trackers, without relying on HR data. The software utilizes minute-per-minute time series for energy expenditure (EE) estimates
extracted from accelerometer data and freely provided by the official Fitbit Web API. A case analysis was conducted on a data set
of 3,339 days collected from 72 individuals who used the Alta HR or Inspire 2 devices to test the feasibility of estimating days of
valid wear using ActiWearCheck with two different configurations, EE estimates ≥ 600 min over the basal metabolic rate
and ≥10 hr with at least 1 min of EE over the basal metabolic rate. The valid wear classifications under both configurations
showed accuracies of 72% and 86%, respectively, against the one performed using HR data (also available). The average daily
estimates of the number of steps and EEwere calculated for the 72 participants after identifying the days of valid wear, performed
using ActiWearCheck. This procedure allowed exclusion of up to 25% of potentially invalid days, leading to 12% and 6%
increases in the step count and EE estimates, respectively. These results demonstrate the feasibility and necessity of obtaining
valid wear estimates for physical activity studies employing consumer-grade devices.
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Key Points

• ActiWearCheck is an open-source Python software designed to determine days of valid wear for consumer-grade wrist-
worn activity trackers, even when heart rate data is unavailable.

• By integrating ActiWearCheck, researchers using consumer-grade activity trackers can improve the reliability of their
physical activity data, addressing known issues of underestimation in step count and energy expenditure.

Activity tracker devices are frequently used in physical activity
(PA) studies. Although contemporary devices feature multisensing
capabilities, the core of energy expenditure (EE) and step count
predictions still relies on data using the accelerometer sensor chip
(Chen&Bassett, 2005). Activity tracker devices are often categorized

into two types. On the one hand, research-grade devices, such as
Actigraph monitors, are designed to provide reliable estimations
of daily PA volumes, which can be used to explore the relation-
ship between lifestyle habits and a wide range of health-related
endpoints. These devices are usually equipped with batteries and
memory chips capable of powering the system and recording data
for maximum periods of approximately 2–4 weeks depending on
the integrated functionalities (e.g., liquid crystal display and high
sampling rate modality) and selected time resolution (Actigraph,
2013; Activinsights, n.d.). They rarely offer >4 weeks of autonomy,
except for some higher end devices, such as the Actigraph LEAP
device (Actigraph, 2024). On the other hand, consumer-grade devices
are made for the general public, enabling individuals to self-monitor
their physical behaviors and enhance their long-term lifestyle. For this
type of device, specific development requirements include miniaturi-
zation of the devices, which often limits their autonomy to a few days.
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For instance, the wrist-worn Inspire 2 Fitbit features a lithium-
polymer battery that lasts no more than 10 days on minimal settings
(e.g., excluding heart rate [HR] measurements), as it stores minute-
per-minute data for a maximum of 7 days before clearing the memory
and switching to daily records (Fitbit, 2021). Although lithium-
polymer batteries can be easily charged at home, the limited memory
capacity of consumer-grade devices is compensated by the ability to
be pairedwith smartphone handsets. This enables cloud data saving at
the highest resolution when synchronized at the recommended time
interval. Some researchers may find the standalone combination of a
consumer-grade activity tracker and smartphone handset attractive
because it facilitates conducting PA studies that may involve long
observation periods. Additional benefits of consumer-grade devices
in research include their lower cost compared with traditional
research-grade devices and the validity of key parameters commonly
used in PA studies, such as step count, EE, and derived outcomes
(Diaz et al., 2015;Murakami et al., 2016, 2019; Nakagata et al., 2022;
Sushames et al., 2016; Tully et al., 2014).

To ensure reliable daily estimates of PA parameters, thefirst step
in processing research-level activity tracker data often involves
estimating the wearing time. Activity tracker devices may continue
to record data even when they are not worn, and the data recorded
during nonwear periods can be similar to those recorded during
sedentary periods (Randhawa et al., 2023). Several studies have
highlighted this issue (Banda et al., 2016; Cain et al., 2013; Mannini
& Sabatini, 2010; Randhawa et al., 2023; Skovgaard et al., 2023;
Vanhelst et al., 2019); some have developed wearing-time algo-
rithms based on the number of epochs with zero count values for
uniaxial acceleration (Banda et al., 2016; Cain et al., 2013), whereas
others have proposed more sophisticated triaxial statistical learning-
based algorithms (Mannini & Sabatini, 2010; Randhawa et al., 2023;
Skovgaard et al., 2023). These different approaches are based on
processing the raw signal from the accelerometer and are generally
included in the software of research-grade devices. However, con-
sumer-grade devices do not typically include such algorithms or
provide access to raw data. Recently, higher end consumer-grade
device manufacturers have proposed the use of minute-per-minute
HRdata to estimatewearing time. To the best of our knowledge, only
one validation study has been published for thismethod (Gorny et al.,
2017), and only one research protocol has attempted to evaluate the
wearing time using HR records (Claudel et al., 2020). Last, because
the core of PA evaluation relies on the treatment of accelerometer
data, some researchers may prefer disabling the HR functionality to
preserve the memory and battery life of the devices.

To summarize, although the distinction between nonwear and
sedentary times is necessary to ensure the reliability of daily PA
estimates, no previous study using Fitbit devices has ever mentioned a
“valid wear” evaluation protocol. The present study introduced and
tested a new configurable Python software that allows the evaluation
of days of valid wear by exploitingminute-per-minute time-series data
collected from the official Fitbit Web API, compared with using HR.

Software Description

The software is named “ActiWearCheck” and was developed in
Python primarily using the NumPy (Harris et al., 2020) and Pandas
(McKinney, 2010) libraries. The full code is open source and
accessible elsewhere under the MIT License (https://github.com/
OchaUni-Physical-Activity-Measurement/ActiWearCheck). This
software was developed to identify the days of valid wear in the
Fitbit activity tracker time series collected in the drePAnon clinical
trial (UMIN000042826).

Concept Used for Evaluating Valid Wear

The main inputs used by the software are minute-per-minute EE data
(in kilocalories per minute). Although minute-per-minute data cannot
be downloaded through the official Fitbit application, they are acces-
sible through the Fitbit Web API, which is freely available to third-
party developers. Because the decimal rounding used to report hourly
data may not reveal a slight EE increase associated with small and rare
movements executed during sedentary behaviors, accessing minute-
per-minute data is critical for the evaluation of valid wear. Indeed, the
slightest decimal deviation between a 1-min EE estimate and the EE
corresponding to basal metabolic rate (BMR) data indicates that a
movement was performed and that the activity tracker was worn
during this minute. Depending on the wearing criteria decided by the
researcher, valid wear can be assessed for each monitoring day based
on the number of minutes that present EE estimates higher than those
corresponding to the BMR (see Figure S1 in the Supplementary
Material [available online] for an illustrative example).

Software Configuration

To test ActiWearCheck, two configurations, based onminute counts
above the estimated BMR and their periodicity, were proposed to
evaluate the days of valid and invalid wear (Figure 1).

Method Cal-worn: Days of valid wear required a minimum of
600 min above the estimated BMR, as previously proposed (Gorny
et al., 2017; Migueles et al., 2017).

Method Cal-worn (per hour): Days of valid wear required a
minimum of 10 hr, containing at least 1 min above the BMR,
adapted from a previous study on the treatment of Actigraph data
(Choi et al., 2012).

Methods Cal-worn and Cal-worn (per hour) corresponded to
two different software configurations. The valid wear estimates of
these two configurations were compared with the outcome of the
HR-based method, which was described as follows:

Method HR-worn: Days of valid wear required a minimum of
600 min with HR data.

Example Case

The analysis was performed using Python (Jupyter Notebook,
version 6.4.12) and the SciPy library (Virtanen et al., 2020).

Population and Protocol

The data used for the analyses were acquired during the drePAnon
clinical trial, which received ethical approval from Cheikh Anta Diop
University, Dakar, Senegal (number: 0388/2019/CER/UCAD). Sev-
enty-two out of 124 young Senegalese men (28.6 ± 7.9 years of age,
including 52 patients with sickle cell anemia and 20 participants
without hemoglobinopathy) were enrolled in the clinical trial and
were equipped with a wrist-worn Fitbit activity tracker device on the
nondominant arm to record both accelerometer-derived PA parameters
andHRdata. The study protocol consisted of amonitoring period of 5–
15weeks. The participants were instructed towear their activity tracker
device continuously throughout the day and to remove it only during
showering, bathing, or performing water-related activities. They were
advised to charge the device while showering/bathing or at bedtime if
the battery was almost empty. Participants who reported sleep quality
impairment due to wearing the activity tracker device were allowed to
wear it during waking hours only. The participants had access to the
Fitbit application, which was configured to show only the time and
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battery levels. All notifications were disabled. Data presented in the
example casewere collected between February 2021 andAugust 2023.
Each participant was monitored for an average of 72 ± 41 days.

Material

The participants received a Fitbit Alta HR or Inspire 2 activity tracker
device (Fitbit), which was paired with the smartphone Fitbit application.
Fifty-six participants wore Alta HR devices, while 16 wore Inspire 2
devices. The protocolwasmodified to use the latter in January 2022, due
to market unavailability of the former. Although the official Fitbit
application provides access to daily summaries only, the FitbitWebAPI
allows access to minute-per-minute data. In the drePAnon study, the
Fitabase platform (Small Steps Labs LLC) was used to download
minute-per-minute data and daily summaries of step counts and EE
parameters. TheHRdatawere also accessed through the Fitabase server.

Both the Fitbit Alta HR and Fitbit Inspire 2 have memory
limitations that prevent them from recording minute-by-minute data
after a few days (5 days for the Fitbit AltaHR and 7 days for the Fitbit
Inspire with optimal configuration). In case of synchronization
failure between the activity tracker device and smartphone handset,
the minute-per-minute data cannot be transferred to the cloud, and
the record of minute-by-minute data is erased to make room for the
storage of daily summaries. This characteristic allows the identifica-
tion of days with unreliable minute-per-minute records, as described
in the “Times Series Cleaning Procedure” section and in Figure 2.

Times Series Cleaning Procedure

Before applying Cal-worn, Cal-worn (per hour), and HR-worn,
the time series were preprocessed to remove days 1) with no step
count record, which indicates that the device was not worn or that
the battery was discharged during that day, or 2) a discrepancy
occurred between the daily EE estimates provided by the original
Fitbit application and the EE estimates computed by resampling
the minute-per-minute EE data, which in turn indicates that the
minute-per-minute data record was corrupted (possibly due to
memory or sync issues). The preprocessing procedure is shown in
Figure 2.

Of the initial 3,339 days of observation, 3,282 days contained at
least one recorded step. Among them, 3,253 days did not show any
differences (±10%) between daily summaries and daily estimates
calculated using the resampled minute-per-minute data. This repre-
sents 97%of the initial data set that underwent a validwear estimation
procedure. The participants were rather active (9,037 ± 5,052 steps
and 2,668 ± 628 kcal per day).

Test 1: Accuracies of the Valid Wear Estimation
Methods

Each of the 3,253 days that were selected after the above cleaning
procedure was classified as “valid wear” or “invalid wear” using
Cal-worn and Cal-worn (per hour) in the developed software. In

Figure 1 — Data processing flow used to estimate days of valid wear using three different methods. The Fitbit Web API provides the number of
minutes and HR data for each day (called “WearTime” in the Fitabase third party application) and the EE estimates for each minute and day. The presence
of one step count and absence of substantial differences between the data sets from a daily basis and a minute basis resampled by day were systematically
checked (see Figure 2).Method Cal-worn evaluates whether there are at least 600 min above the BMR throughout the day.Method Cal-worn (per hour)
evaluates whether there are at least 10 hr containing at least 1 min above the BMR throughout the day. Method HR-worn evaluates whether there are at
least 600 min of HR data throughout the day. BMR = basal metabolic rate; Cal = calories; EE = energy expenditure; HR = heart rate.
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the absence of a gold standard, the classifications of these two
methods were compared with that ofHR-worn, which was unlikely
to produce false positives. The results are presented as confusion
matrices in Figure 3. The accuracies were calculated by summing
all true positive and true negative outcomes divided by the total
number of predictions (here, 3,253 days).

The accuracy of Cal-worn (at least 600 min above BMR
throughout the day) against HR-worn (at least 600 min of HR
data throughout the day) was 72.0%. As shown in Figure 3, 83.6%
of the days evaluated as valid wear using HR-worn were similarly
evaluated using Cal-worn. Conversely, 16.4% of the days evalu-
ated as valid wear using the HR-worn were evaluated as invalid
wear using Cal-worn. In addition, 76.5% of the days evaluated as
invalid wear using HR-worn were similarly evaluated using Cal-
worn, and 23.5% of the days evaluated as invalid wear using the
HR-worn were evaluated as valid wear using Cal-worn.

The accuracy of Cal-worn (per hour) (at least 10 hr containing
1 min above the BMR throughout the day) against HR-worn (at least
600 min of HR data throughout the day) was 86.0%. As shown in
Figure 3, 100% of the days evaluated as valid wear using HR-worn
were also similarly evaluated using Cal-worn (per hour).
In addition, 39.3% of the days evaluated as invalid wear using
HR-worn were similarly evaluated using Cal-worn (per hour) and
60.7% of the days evaluated as invalid wear using the HR-wornwere
evaluated as valid wear using Cal-worn (per hour). Further analyses
are provided as SupplementaryMaterial (available online), and Figure
S2 (see Supplementary Material [available online]) shows that the
more active the participant was in the day, the higher the agreement
between the methods. Furthermore, Figure S3 (see Supplementary

Material [available online]) provides comparative metrics between
methods regarding PA values for each subject, including the results of
themean average error, mean average percentage error, and root mean
square error tests. The figure shows overall a good concordance
betweenmethods (mean average percentage error between ∼1.5% and
6%). Yet, larger discrepancies for some subjects showwhy relying on
a single method could incorrectly consider that the tracker was not
worn, justifying the proposed approach.

Test 2: Impact of Using the Valid Wear
Estimation Software on General Statistics

The estimation of days of valid wear performed using HR-worn
resulted in the exclusion of 14% of the days. Cal-worn and Cal-
worn (per hour) excluded 25% and 5% of the days, respectively.
Sixty-eight of the 72 participants had more than 1 day of valid wear
application of Cal-worn or Cal-worn (per hour) and were included
in the statistical analysis. Considering the three tested methods, it is
noteworthy that the higher the number of excluded days, the higher
the average step count and EE. The results of the data selection
process for the entire population along with the mean daily step
counts and EE estimates are presented in Table 1. The average daily
step count and EE predictions were calculated for each participant
and method, and a Friedman test (nonnormal distribution of EE
values, Shapiro–Wilk test, p < .05) was employed to assess the
effect of different valid wear methods (Cal-worn, Cal-worn [per
hour], HR-worn, and none) on the predictions. The method had an
effect on both the step count and EE predictions (p < .001). Con-
over post hoc tests indicated a statistically significant difference

Figure 2 — Flowchart of data preprocessing. (A) Algorithmic logic of the data ActiWearCheck preprocessing flow. (B) Outcomes of data
preprocessing for the example case. EE = energy expenditure; PA = physical activity.
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between the step count and EE estimates calculated after the
application of the Cal-worn and the ones obtained without any
valid wear evaluation procedure (p = .001 and .001, respectively).
These differences are illustrated in Figure 4. The outcome of the
valid wear evaluation software on the step count outcome for a
selected participant is illustrated in Figure 5.

Finally, in the absence of a gold standardmethod, the average step
count and EE values representing days of valid wear for each
participant, estimated using Cal-worn or Cal-worn (per hour), were
compared with those obtained for days of valid wear, estimated using
HR-worn, using Bland–Altman plots. These plots are presented in
Figure 6. The results revealed two key differences between methods.
First, the Cal-worn method showed a slight positive bias (+738 steps/
day, +88 kcal/day), suggesting a tendency to overestimate step count
and EE comparedwith theHR-wornmethod. In contrast, theCal-worn
(per hour)method produced estimates closer toHR-worn (−227 steps/
day, +60 kcal/day). Second, the limits of agreement indicated that step
count estimates were more dispersed with the Cal-worn method
(±15.5%) than with the Cal-worn (per hour) method (±8.7%), sug-
gesting better interchangeability with HR-worn in the latter case. For
EE, the limits of agreement were lower and similar between methods,
that is, ±7.0% for Cal-worn and ±6.7% for Cal-worn (per hour).

Taken together, these results indicate that Cal-worn (per hour)
is more conservative than Cal-worn in the estimation of days of
valid wear, resulting in step count and EE predictions that are closer
to those obtained after the application of HR-worn. All data and
scripts used for the analysis are available at https://github.com/
OchaUni-Physical-Activity-Measurement/ActiWearCheck.

Discussion

In this study, a new open-access Python software (“ActiWear
Check”) was presented, enabling the selection of days of valid
wear in PA studies using consumer-grade accelerometer-based
activity trackers. The software excluded days of “invalid wear”
from the data set, thus enhancing the validity of PA values
considered for further analyses. Days of valid wear can be selected
using either HR or accelerometer data. If accelerometer data are
used, the evaluation criteria included in the software can be
configured in two ways: (a) the total number of minutes above
the BMR that the activity tracker should reach or (b) the minimum
number of minutes above the BMR per hour for a specified number
of hours. In the example case, the latter configuration set to identify
days of valid wear as having ≥10 hr with at least 1 min of EE over

Table 1 Day and Step Counts and EE After Application of the Preprocessing Procedure Using Cal-Worn,
Cal-Worn (per Hour), and HR-Worn

Day count Steps (step/day) EE (kcal/day)

Before cleaning 3,339 8,896 ± 5,144 2,644 ± 641

After cleaning (“No Method”) 3,253 9,037 ± 5,052 2,668 ± 628

Valid wear evaluation

Cal-worn 2,446 (75%) 10,137 ± 4,563 2,837 ± 592

Cal-worn (per hour) 3,073 (95%) 9,292 ± 4,861 2,708 ± 612

HR-worn 2,798 (84%) 9,327 ± 4,752 2,742 ± 617

Note. The cleaning procedure consisted of removing days without any step record or with a difference greater than 10% between the daily total of minute-per-minute data
and daily summaries. Percentages are calculated for Cal-worn, Cal-worn (per hour), and HR-worn, relative to the number of days included after the preprocessing
procedure (No Method). Cal = calories; EE = energy expenditure; HR = heart rate.

Figure 3 — Accuracy of accelerometer data-based evaluation of days of valid wear relative to Method HR. (A) Accuracy of wear classification for
Cal-worn versus HR-worn. (B) Accuracy of wear classification for Cal-worn (per hour) versus HR-worn, expressed in percentage. Cal = calories;
HR = heart rate.
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the BMR (Cal-worn [per hour]) presented satisfying accuracies
using the selection method based on HR data (HR-worn). The
average step count and EE predictions calculated for the participant
also exhibited low dispersion scores in relation to the HR data-
based selection method.

Applying ActiWearCheck to a Set of Fitbit Data

ActiWearCheck was configured to use Cal-worn and Cal-worn
(per hour), respectively, with the minute count and periodicity
criteria described above to evaluate the days of valid wear for the
wrist-worn Fitbit activity trackers used in the drePAnon clinical
study (n = 72), compared with the HR-basedmethod.Cal-worn and
Cal-worn (per hour) showed accuracies of 72% and 86%, respec-
tively, compared with the HR-worn for the classification of valid/
invalid wear days. In the example case, the valid wear evaluation

method can exclude up to 25% of daily records. Excluding the days
during which the activity tracker device was only partially worn
increased the average daily step count and EE values. In some
cases, the overall step count or EE estimates were reduced. For
example, some individuals could have walked continuously from
8 a.m. to 11 a.m. and remained completely inactive for the rest of
the day. In this case, this particular day might be classified as
“nonvalid” and the activity performed during the morning will not
be accounted for, potentially reducing the average step count and
EE estimates. However, this scenario did not reflect the observed
general case (Figure S2 in the Supplementary Material [available
online]). In a recent review of the literature assessing the accuracy
of consumer-grade activity tracker devices, Germini et al. (2022)
reported that Fitbit devices correctly estimate steps but are not
accurate in measuring EE. In another review, Chevance et al.
(2022) reported that Fitbit devices are likely to underestimate the

Figure 4 — Comparison of methods in relation to daily estimates of step count and energy expenditure. (A) Daily energy expenditure estimates.
(B) Daily number of step estimates. Sixty-eight of the 72 participants had more than 1 day of valid wear after the application of Cal-worn and Cal-worn
(per hour) and were therefore included in the statistical analysis. No Method corresponds to data only treated with the times series cleaning procedure. ○:
outlier data. *p < .01. Cal = calories; HR = heart rate.
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step count and EE. Therefore, the application of valid wear criteria
using a simple Python software has the potential to offer substantial
benefits for the accuracy of daily estimates of PA metrics in studies
employing consumer-grade accelerometer-based activity tracker
devices. Specifically, regarding the underestimation issue noted in
a previous study (Chevance et al., 2022), implementing Acti-
WearCheck can assist in identifying and excluding days with
partial wear thereby preventing them from contributing to artifi-
cially low estimates.

Data Treatment and Configuration

In the context of consumer-grade activity trackers, manufacturers
usually do not provide access to raw accelerometer data or wearing

time processing algorithms. The proposed Python software relies
on the treatment of minute-per-minute EE, a physiological estimate
that Fitbit measures with increments above the BMR at the first
decimal resolution. Therefore, the minimum change observable at
this resolution was assumed to capture the smallest changes above
the resting EE, which are typically movements executed during
sedentary behavior. To evaluate wearing time, the resolution of-
fered by Fitbit devices, that is, minute summaries, may be sufficient
to counterbalance the lack of access to raw data. While future
studies are needed to establish the true sensitivity of Fitbit devices,
Figure S1 (see SupplementaryMaterial [available online]) provides
an example suggesting that EE may be responsive to fine or upper
body movements, such as those occurring during sedentary or low-
intensity activities. In addition, the configuration used in Cal-worn

Figure 5 — Effect ofHR-worn, Cal-worn (per hour), and Cal-worn on day selection and calculation of energy expenditure (left) and step count (right)
estimates for one selected participant during a 30-day period. (A) Data were treated with the times series cleaning procedure, but no assessment of valid
wear was performed. (B) Valid days assessed using HR-worn (at least 600 min of HR data throughout the day). (C) Days assessed using Cal-worn (per
hour) (at least 10 hr containing at least 1 min above the BMR throughout the day). (D) Days assessed using Cal-worn (at least 600 min above the BMR
throughout the day). HR = heart rate; Cal = calories; BMR = basal metabolic rate.
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(per hour) can be employed to address the issue related to the
possible inability of minute-per-minute EE estimates to capture all
movements of sedentary behaviors. Indeed, some physical beha-
viors executed during sedentary hours (a few steps to the bathroom,
changing posture, etc.) may allow the activation of the Fitbit algo-
rithm in a way that will increase the EE estimates by one minute.
Thus, only 10 min above the BMR equally distributed over 10 of
the 24 hr were needed to include a day in the analysis. In addition,
the software can be configured to more or less conservative criteria
(e.g., at least 6 hr with at least 2 min above the BMR or 16 hr with at
least 1 min above the BMR) depending on the characteristics of the
studied population. The additional configurations proposed in the
software were not tested in the example case. The valid wear
(steps) method checks that there are enough steps in a given day,
and the valid wear (steps, hours)method checks that enough hours
in a given day included at least a few steps (parameterizable).
Restricting valid wear analysis to the usual waking hours
(e.g., from 5:00 to 22:59) or any other period of the day is also
possible. Finally, the software is open source, and researchers can
add criteria to fulfill the needs of their protocol. For instance, one

may be interested in validating a day as worn after a certain number
of realized steps or considering bouts of continuous PA (Hardcastle
et al., 2020).

Limitations and Strengths

First, the lack of a gold standard measure of the actual wearing time is
a limitation of the present analytical design. In this study, the HR-
based parameter was compared with the evaluations performed using
Cal-worn and Cal-worn (per hour), which were solely based on
accelerometer-derived PA parameters. However, the validity of HR
measurements using activity trackers is still being investigated
(Claudel et al., 2020; Gorny et al., 2017), and studies evaluating
the use of this parameter to assess the valid wear of the device are yet
to be published. Moreover, the HR lens can be manually disabled by
the participant through the Fitbit application; at least this was the case
for the Alta HR and Inspire 2 devices at the time of the drePAnon
study. Future studies should aim to assess the validity of valid wear
evaluations using consumer-grade accelerometer-based devices, con-
sidering control procedures, such as wearing time diaries or the

Figure 6 — Difference plot (Bland–Altman) between Cal-worn and HR-worn, and between Cal-worn (per hour) and HR-worn. (A) Cal-worn versus
HR-worn regarding differences in average step count estimates. (B) Cal-worn versus HR-worn regarding differences in average EE estimates. (C) Cal-
worn (per hour) versusHR-worn regarding differences in average step count estimates. (D)Cal-worn (per hour) versusHR-worn regarding differences in
average EE estimates. One data point corresponds to the average step count or EE estimates calculated for days of valid wear for one participant. The
dispersion rate around the mean is indicated in the plot. Cal = calories; HR = heart rate; EE = energy expenditure.
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concomitant use of activity trackers compatible with open research
that allows the extraction of raw accelerometer data. Nevertheless,
without considering a gold standard, a method based on HR data is
unlikely to produce false-positive outcomes (i.e., detect heartbeat
when not worn), allowing for some level of interpretation of the
example case results. The handling of false negatives (no HR but
wear detected through step or EE estimates) is left to the user of
ActiWearCheck. In the absence of an appropriate gold standard, HR
measures proposed by some manufacturers to evaluate valid wear
provide a reference for evaluating the proposed software.

Second, the example case illustrated the functionality of the
software user data from a study conducted in Senegal. The
association between darker skin and issues in HR measurement
accuracy has been discussed (Bent et al., 2020; Shcherbina et al.,
2017), questioning the reliability of such methods in non-White
populations. However, errors reported by Bent et al. (2020) for
darker skin tones measured 3–4 beats/min compared with lighter
tone skins. Regardless of the skin tone, errors typically measure
approximately 5 beats/min at rest and 15 beats/min during walking.
Although the differences noted by Bent et al. (2020) and other
authors may be of primary importance for research aimed at
improving the accuracy of HR measurements, it is less critical for
binary wear/nonwear evaluation relevant to ActiWearCheck.

Finally, the software is currently designed to work with data
exported from Fitabase. To address this limitation, a program that
converts JSON data obtained from the Fitbit Web API is also
provided to facilitate the use of the software. The software will also
benefit from contributions aimed at generalizing its use to data
obtained from a wider range of activity tracker devices.

Conclusions

ActiWearCheck is a new Python software that enables the selection
of days of valid wear in PA studies. This software is open access
(https://github.com/OchaUni-Physical-Activity-Measurement/Acti
WearCheck). Although consumer-grade activity tracker devices
have been linked to frequent underestimations of daily step counts
and EE (Chevance et al., 2022), researchers using this type of device,
especially accelerometer-based monitors, may benefit from the use
of ActiWearCheck to improve the accuracy of their PA outcomes, as
suggested in the example case presented in this manuscript.
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